Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 258: 116354, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723331

RESUMEN

Real-time monitoring of biological markers in sweat is a valuable tool for health assessment. In this study, we have developed an innovative wearable biosensor for precise analysis of glucose in sweat during physical activities. The sensor is based on a single-atom catalyst of platinum (Pt) uniformly dispersed on tricobalt tetroxide (Co3O4) nanorods and reduced graphene oxide (rGO), featuring a unique three-dimensional nanostructure and excellent glucose electrocatalytic performance with a wide detection range of 1-800 µM. Additionally, density functional theory calculations have revealed the synergetic role of Pt active sites in the Pt single-atom catalyst (Co3O4/rGO/Pt) in glucose adsorption and electron transfer, thereby enhancing sensor performance. To enable application in wearable devices, we designed an S-shaped microfluidic chip and a point-of-care testing (POCT) device, both of which were validated for effectiveness through actual use by volunteers. This research provides valuable insights and innovative approaches for analyzing sweat glucose using wearable devices, contributing to the advancement of personalized healthcare.

2.
Food Chem ; 439: 138157, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081097

RESUMEN

Nanozymes were nanomaterials with enzymatic properties. They had diverse functions, adjustable catalytic activity, high stability, and easy large-scale production, attracting interest in biosensing. However, nanozymes were scarcely applied in Baijiu identification. Herein, a colorimetric and fluorometric dual-signal determination mediated by a nanozyme-H2O2-TMB system was developed for the first time to identify organics and Baijiu. Since the diverse peroxidase-like activity of nanozymes, resulted in different degrees of oxidized TMB. Based on this, 21 organics were identified qualitatively and quantitatively by colorimetric method with a rapid response (<12 min), broad linearity (0.0005-35 mM), and low detection limits (a minimum of 30 nM for glutaric acids). Furthermore, the fluorometric method exhibited excellent potential for accurate determination of organics, with detection ranges of 2-200 µmol/L (LOD: 0.22 µmol/L) for l-ascorbic acid and 2-300 µmol/L (LOD: 0.59 µmol/L) for guaiacol. Finally, the sensor was successfully applied to identify fake Baijiu and Baijiu from 16 different brands.


Asunto(s)
Glucosa , Peróxido de Hidrógeno , Colorimetría/métodos , Fluorometría , Peroxidasas , Peroxidasa
3.
Food Chem ; 407: 135154, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502727

RESUMEN

Pichia kudriavzevii was one of the important aroma-producing fungi in the solid-state fermentation of Baijiu, and immobilization was an effective strategy for improving microbial performance. Herein, P. kudriavzevii cells were immobilized in a gel network that crosslinked by chitosan and sodium alginate to form sodium alginate/chitosan-P. kudriavzevii microspheres (SA/CS-PMs). Their structural characteristics and formation processes were characterized by SEM and FT-IR. The effect of synthesis conditions on the performance of microspheres were determined by single-factor experiments. Under the optimal conditions, the SA/CS-PMs could increase the amylase activity of the fermentation broth by 57.18%, the esterase activity by 66.13%, the content of ester by 67.04%, and could be reused at least three times. Further research results indicated that the content of ester could be increased significantly in Baijiu solid-state fermentation with the SA/CS-PMs. In conclusion, the SA/CS-PMs could improve the ester production ability of P. kudriavzevii by increasing the esterase activity, which was a valuable exploration of directional biosynthesis and a feasible strategy to improve solid-state fermentation quality.


Asunto(s)
Quitosano , Fermentación , Alginatos , Ésteres , Microesferas , Espectroscopía Infrarroja por Transformada de Fourier , Pichia , Esterasas
4.
Analyst ; 148(1): 153-162, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36477081

RESUMEN

Herein, nanoflower-shaped Mn-doped NiO nano-enzyme composites with high catalytic performance and excellent conductivity were grown on 3D flexible carbon fiber cloth (CFC) via hydrothermal and calcination methods to construct an efficient flexible glucose-sensitive detection electrode. For electrochemical-based sensors, high conductivity is a prerequisite for reliable data acquisition. To avoid the problems associated with using insulating Nafion or paraffin binders, we adopted a strategy of directly growing Mn-doped NiO onto the electrode surface, thereby avoiding interference due to the oxidization of species present in real samples at higher redox potentials, since Ni2+/Ni3+ has low redox potential. Therefore, the electrode has a linear range of 3-5166 µM for glucose detection, with a detection limit as low as 0.28 µM, showing excellent selectivity and reproducibility. The composite-modified electrode provides accurate detection results with real human serum samples, which are in full agreement with those of commercial blood glucose meters. In addition, we tested the glucose content in tea and sorghum fermentation broth at different stages, further expanding the application range of the Mn-NiO sensors. The nano-enzyme sensor fabricated herein offers a new idea for further integration into wearable flexible electronic devices for accurate glucose detection.


Asunto(s)
Nanoestructuras , Humanos , Reproducibilidad de los Resultados , Glucosa , Electrodos , Automonitorización de la Glucosa Sanguínea
5.
Appl Opt ; 61(16): 4843-4850, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255968

RESUMEN

The detection and discrimination of organic acids (OAs) is of great importance in the early diagnosis of specific diseases. In this study, we established an effective visual sensor array for the identification of OA. This is the first time, to our best knowledge, that metal ions were used to regulate the etching of silver triangular nanoprisms (AgTNPs) in an OA discrimination sensor array. The sensor array was based on the oxidation etching of AgTNPs by three metal ions (Mn2+, Pb2+, and Cr3+) and accelerated etching of AgTNPs by OA. The introduction of metal ions alone led to a slight wavelength shift of the AgTNPs colloid solution, signifying the incomplete etching of the AgTNPs. Nevertheless, when metal ions and OA were introduced simultaneously to the solution, a significant blueshift of the localized surface plasmon resonance peak was detected, and a color change of the AgTNPs was observed, which were the consequences of morphological transitions of the AgTNPs. The addition of different OA accelerated AgTNPs etching in varying degrees, generating diverse colorimetric response patterns (i.e., RGB variations) as "fingerprints" associated with each specific organic acid. Pattern recognition algorithms and neural network simulation were employed to further data analysis, indicating the outstanding discrimination capability of the provided array for eight OA at the 33 µM level. Moreover, excellent results of selective experiments as well as real samples tests demonstrate that our proposed method possesses great potential for practical applications.


Asunto(s)
Compuestos Orgánicos , Colorimetría/métodos , Iones , Compuestos Orgánicos/aislamiento & purificación , Plata , Metales
6.
Planta ; 253(1): 8, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33387047

RESUMEN

MAIN CONCLUSION: The molecular mechanism underlying white petal color in Brassica napus was revealed by transcriptomic and metabolomic analyses. Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide, but the mechanisms underlying flower color in this crop are known less. Here, we performed metabolomic and transcriptomic analyses of the yellow-flowered rapeseed cultivar 'Zhongshuang 11' (ZS11) and the white-flowered inbred line 'White Petal' (WP). The total carotenoid contents were 1.778-fold and 1.969-fold higher in ZS11 vs. WP petals at stages S2 and S4, respectively. Our findings suggest that white petal color in WP flowers is primarily due to decreased lutein and zeaxanthin contents. Transcriptome analysis revealed 10,116 differentially expressed genes with a fourfold or greater change in expression (P-value less than 0.001) in WP vs. ZS11 petals, including 1,209 genes that were differentially expressed at four different stages and 20 genes in the carotenoid metabolism pathway. BnNCED4b, encoding a protein involved in carotenoid degradation, was expressed at abnormally high levels in WP petals, suggesting it might play a key role in white petal formation. The results of qRT-PCR were consistent with the transcriptome data. The results of this study provide important insights into the molecular mechanisms of the carotenoid metabolic pathway in rapeseed petals, and the candidate genes identified in this study provide a resource for the creation of new B. napus germplasms with different petal colors.


Asunto(s)
Brassica napus , Carotenoides , Flores , Metaboloma , Pigmentación , Transcriptoma , Brassica napus/genética , Carotenoides/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Metaboloma/genética , Pigmentación/genética , Transcriptoma/genética
7.
Anal Methods ; 12(41): 4996-5003, 2020 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-33021259

RESUMEN

Different valence states of chromium ions possess huge differences in toxicity. Hence, it is an innovative idea to design a reasonable probe to detect Cr according to the toxicity characteristics of different valence states. We report a novel, rapid, simple and accurate probe for the detection of Cr3+ and Cr6+ ions. As a probe, gold nanoparticles (Au NPs) are successfully modified using tartaric acid (TA) and 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES) via a two-step modification; the probe shows an increase in the sensitivity towards Cr6+ and decreases towards Cr3+, which is consistent with their toxicity characteristics, benefiting the assessment of total Cr toxicity. The proposed probe achieves considerable two-channel (ultraviolet absorption spectrum and naked eye vision) detection of Cr3+ and Cr6+ providing wide linearity regions and low detection limits. Meanwhile, the results of the interference experiments and analysis of the real samples showed high selectivity and accuracy of the proposed method. With popularization, this method possesses great potential in environmental monitoring and control.


Asunto(s)
Colorimetría , Nanopartículas del Metal , Cromo/toxicidad , Oro , Iones , Límite de Detección , Nanopartículas del Metal/toxicidad
8.
PLoS One ; 15(9): e0238179, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32881902

RESUMEN

Carotenoid cleavage dioxygenase (CCD), a key enzyme in carotenoid metabolism, cleaves carotenoids to form apo-carotenoids, which play a major role in plant growth and stress responses. CCD genes had not previously been systematically characterized in Brassica napus (rapeseed), an important oil crop worldwide. In this study, we identified 30 BnCCD genes and classified them into nine subgroups based on a phylogenetic analysis. We identified the chromosomal locations, gene structures, and cis-promoter elements of each of these genes and performed a selection pressure analysis to identify residues under selection. Furthermore, we determined the subcellular localization, physicochemical properties, and conserved protein motifs of the encoded proteins. All the CCD proteins contained a retinal pigment epithelial membrane protein (RPE65) domain. qRT-PCR analysis of expression of 20 representative BnCCD genes in 16 tissues of the B. napus cultivar Zhong Shuang 11 ('ZS11') revealed that members of the BnCCD gene family possess a broad range of expression patterns. This work lays the foundation for functional studies of the BnCCD gene family.


Asunto(s)
Brassica napus/enzimología , Dioxigenasas/genética , Genoma de Planta , Proteínas de Plantas/genética , Arabidopsis/enzimología , Brassica napus/genética , Carotenoides/metabolismo , Mapeo Cromosómico , Dioxigenasas/clasificación , Dioxigenasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas
9.
Plants (Basel) ; 9(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825473

RESUMEN

The multidrug and toxic compound extrusion (MATE) protein family is important in the export of toxins and other substrates, but detailed information on this family in the Brassicaceae has not yet been reported compared to Arabidopsis thaliana. In this study, we identified 57, 124, 81, 85, 130, and 79 MATE genes in A. thaliana, Brassica napus, Brassica oleracea, Brassica rapa, Brassica juncea, and Brassica nigra, respectively, which were unevenly distributed on chromosomes owing to both tandem and segmental duplication events. Phylogenetic analysis showed that these genes could be classified into four subgroups, shared high similarity and conservation within each group, and have evolved mainly through purifying selection. Furthermore, numerous B. napusMATE genes showed differential expression between tissues and developmental stages and between plants treated with heavy metals or hormones and untreated control plants. This differential expression was especially pronounced for the Group 2 and 3 BnaMATE genes, indicating that they may play important roles in stress tolerance and hormone induction. Our results provide a valuable foundation for the functional dissection of the different BnaMATE homologs in B. napus and its parental lines, as well as for the breeding of more stress-tolerant B. napus genotypes.

10.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210032

RESUMEN

Phosphorus transporter (PHT) genes encode H2PO4-/H+ co-transporters that absorb and transport inorganic nutrient elements required for plant development and growth and protect plants from heavy metal stress. However, little is known about the roles of PHTs in Brassica compared to Arabidopsis thaliana. In this study, we identified and extensively analyzed 336 PHTs from three diploid (B. rapa, B. oleracea, and B. nigra) and two allotetraploid (B. juncea and B. napus) Brassica species. We categorized the PHTs into five phylogenetic clusters (PHT1-PHT5), including 201 PHT1 homologs, 15 PHT2 homologs, 40 PHT3 homologs, 54 PHT4 homologs, and 26 PHT5 homologs, which are unevenly distributed on the corresponding chromosomes of the five Brassica species. All PHT family genes from Brassica are more closely related to Arabidopsis PHTs in the same vs. other clusters, suggesting they are highly conserved and have similar functions. Duplication and synteny analysis revealed that segmental and tandem duplications led to the expansion of the PHT gene family during the process of polyploidization and that members of this family have undergone purifying selection during evolution based on Ka/Ks values. Finally, we explored the expression profiles of BnaPHT family genes in specific tissues, at various developmental stages, and under heavy metal stress via RNA-seq analysis and qRT-PCR. BnaPHTs that were induced by heavy metal treatment might mediate the response of rapeseed to this important stress. This study represents the first genome-wide analysis of PHT family genes in Brassica species. Our findings improve our understanding of PHT family genes and provide a basis for further studies of BnaPHTs in plant tolerance to heavy metal stress.


Asunto(s)
Adaptación Biológica , Brassica/genética , Brassica/metabolismo , Regulación de la Expresión Génica de las Plantas , Metales Pesados/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Estrés Fisiológico , Secuencia Conservada , Evolución Molecular , Genoma de Planta , Estudio de Asociación del Genoma Completo , Familia de Multigenes , Filogenia
11.
Int J Mol Sci ; 19(8)2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-30049941

RESUMEN

Brassica plants exhibit both high biomass productivity and high rates of heavy metal absorption. Metallothionein (MT) proteins are low molecular weight, cysteine-rich, metal-binding proteins that play crucial roles in protecting plants from heavy metal toxicity. However, to date, MT proteins have not been systematically characterized in Brassica. In this study, we identified 60 MTs from Arabidopsis thaliana and five Brassica species. All the MT family genes from Brassica are closely related to Arabidopsis MTs, encoding putative proteins that share similar functions within the same clades. Genome mapping analysis revealed high levels of synteny throughout the genome due to whole genome duplication and segmental duplication events. We analyzed the expression levels of 16 Brassica napus MTs (BnaMTs) by RNA-sequencing and real-time RT-PCR (RT-qPCR) analysis in plants under As3+ stress. These genes exhibited different expression patterns in various tissues. Our results suggest that BnaMT3C plays a key role in the response to As3+ stress in B. napus. This study provides insight into the phylogeny, origin, and evolution of MT family members in Brassica, laying the foundation for further studies of the roles of MT proteins in these important crops.


Asunto(s)
Arsénico/metabolismo , Brassica napus/genética , Regulación de la Expresión Génica de las Plantas , Metalotioneína/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Brassica napus/química , Brassica napus/metabolismo , Genoma de Planta , Metalotioneína/química , Metalotioneína/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Estrés Fisiológico , Transcriptoma
12.
Front Plant Sci ; 9: 1872, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30662447

RESUMEN

Brassica napus L. is a widely cultivated oil crop and provides important resources of edible vegetable oil, and its quality is determined by fatty acid composition and content. To explain the genetic basis and identify more minor loci for fatty acid content, the multi-locus random-SNP-effect mixed linear model (mrMLM) was used to identify genomic regions associated with fatty acid content in a genetically diverse population of 435 rapeseed accessions, including 77 winter-type, 55 spring-type, and 303 semi-winter-type accessions grown in different environments. A total of 149 quantitative trait nucleotides (QTNs) were found to be associated with fatty acid content and composition, including 34 QTNs that overlapped with the previously reported loci, and 115 novel QTNs. Of these, 35 novel QTNs, located on chromosome A01, A02, A03, A05, A06, A09, A10, and C02, respectively, were repeatedly detected across different environments. Subsequently, we annotated 95 putative candidate genes by BlastP analysis using sequences from Arabidopsis thaliana homologs of the identified regions. The candidate genes included 34 environmentally-insensitive genes (e.g., CER4, DGK2, KCS17, KCS18, MYB4, and TT16) and 61 environment-sensitive genes (e.g., FAB1, FAD6, FAD7, KCR1, KCS9, KCS12, and TT1) as well as genes invloved in the fatty acid biosynthesis. Among these, BnaA08g08280D and BnaC03g60080D differed in genomic sequence between the high- and low-oleic acid lines, and might thus be the novel alleles regulating oleic acid content. Furthermore, RT-qPCR analysis of these genes showed differential expression levels during seed development. Our results highlight the practical and scientific value of mrMLM or QTN detection and the accuracy of linking specific QTNs to fatty acid content, and suggest a useful strategy to improve the fatty acid content of B. napus seeds by molecular marker-assisted breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...